Weighted Means and Summability by the Circle and Other Methods*

David Borwein* and Tom Markovich ${ }^{+}$
*Department of Mathematics, University of Western Ontario, London, Canada N6A 5B7, and
${ }^{\dagger}$ Department of Mathematics, Laurentian University, Sudbury, Ontario, Canada P3E 2C6
Communicated by Paul Nevai

Received August 13, 1990

Abstract

It is proved that if the weighted means of a sequence satisfy certain order conditions, then the sequence is summable by every non-trivial circle method, by the Cesàro method, C_{1}, and by the Borel-type method (B, α, β). © 1992 Academic Press, Inc.

1. Introduction

Suppose throughout that $\left\{s_{n}\right\}$ is a given sequence, and that $\left\{q_{n}\right\}$ is a sequence of positive numbers. The sequence of weighted means $\left\{t_{n}\right\}$ is defined by

$$
t_{n}:=\frac{1}{Q_{n}} \sum_{k=0}^{n} q_{k} s_{k}, \quad \text { where } \quad Q_{n}:=\sum_{k=0}^{n} q_{k} .
$$

The sequence $\left\{s_{n}\right\}$ is said to be summable to s by the weighted mean method M_{q} if $t_{n} \rightarrow s$. In particular, the Cesàro method C_{1} and the logarithmic method l are the methods M_{q} with $q_{k}:=1$ and $q_{k}:=1 /(k+1)$, respectively. The sequence of C_{1}-means of any sequence $\left\{x_{n}\right\}$ will be denoted by $\left\{x_{n}^{1}\right\}$.

Recall that the Borel-type method (B, α, β), the Valiron method V_{α} ($\alpha>0$), the Euler method E_{δ}, the Meyer-König method S_{δ}, and the Taylor method $T_{\delta}(0<\delta<1)$ are defined by

$$
s_{n} \rightarrow s(B, \alpha, \beta) \quad \text { if } \quad \alpha e^{-x} \sum_{n=N}^{\infty} s_{n} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha+\beta)} \rightarrow s \quad \text { as } \quad x \rightarrow \infty,
$$

[^0]where $\alpha N+\beta>0$;
\[

$$
\begin{array}{lll}
s_{n} \rightarrow s\left(V_{\alpha}\right) & \text { if }\left(\frac{\alpha}{2 \pi n}\right)^{1 / 2} \sum_{k=0}^{\infty} \exp \left(-\frac{\alpha(n-k)^{2}}{2 n}\right) s_{k} \rightarrow s & \text { as } n \rightarrow \infty ; \\
s_{n} \rightarrow s\left(E_{\delta}\right) & \text { if } \quad \sum_{k=0}^{n}\binom{n}{k} \delta^{k}(1-\delta)^{n-k} s_{k} \rightarrow s & \text { as } n \rightarrow \infty ; \\
s_{n} \rightarrow s\left(S_{\delta}\right) & \text { if }(1-\delta)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} \delta^{k} s_{k} \rightarrow s & \text { as } n \rightarrow \infty ; \\
s_{n} \rightarrow s\left(T_{\delta}\right) & \text { if }(1-\delta)^{n+1} \sum_{k=0}^{\infty}\binom{n+k}{k} \delta^{k} s_{n+k} \rightarrow s & \text { as } n \rightarrow \infty .
\end{array}
$$
\]

Let Γ denote the family of all the methods (B, α, β) and V_{α} with $\alpha>0$, and all the methods E_{δ}, S_{δ}, and T_{δ} with $0<\delta<1$. The non-Borel-type methods in Γ are commonly called "circle" methods. All the methods in Γ are regular and not equivalent to convergence. For basic properties of these methods see $[1,4,6,9]$.

In general C_{1}-summability does not imply summability by any member of Γ. However, the following result is known [7, Theorem 4; 2, Theorems 1, 2, and 3].

Theorem C. If $s_{n}^{1}=s+o\left(n^{-1 / 2}\right)$, then $\left\{s_{n}\right\}$ is summable to s by every member of Γ.

It is also known [4, p.59] that C_{1}-summability implies l-summability, but that l-summability does not imply C_{1}-summability. Parameswaran has proved [8, Theorem 1] the following theorem.

Theorem L. If

$$
\frac{1}{\log n} \sum_{k=0}^{n} \frac{s_{k}}{k+1}=s+\frac{\mu}{\log n}+o\left(\frac{n^{-1 / 2}}{\log n}\right)
$$

then $\left\{s_{n}\right\}$ is summable to s by every member of Γ (and by C_{1}).
It is easily seen that $\log n$ can be replaced by $Q_{n}:=\sum_{k=0}^{n} 1 /(k+1)$ in the above hypothesis. Thus Theorem L shows that l-summability together with an order relation implies C_{1}-summability.

2. Results

It is the aim of this paper to establish the following two theorems.
Theorem 1. Suppose that

$$
\begin{equation*}
\frac{q_{n-1}}{q_{n}}=1+O\left(n^{-1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
t_{n}=s+\frac{\mu}{Q_{n}}+o\left(\frac{n^{1 / 2} q_{n}}{Q_{n}}\right) \tag{2}
\end{equation*}
$$

where s and μ are constants. Then $\left\{s_{n}\right\}$ is summable to s by every member of Γ (and by C_{1}). Moreover, o cannot be replaced by O in (2). Indeed, there exists a C_{1}-summable bounded sequence $\left\{s_{n}\right\}$ which is not summable by any member of Γ and which satisfies

$$
t_{n}=O\left(\frac{n^{1 / 2} q_{n}}{Q_{n}}\right)
$$

This shows that M_{q}-summability together with an order condition implies summability by every member of Γ and that the order condition is best possible in a strong sense. If the sequence $\left\{q_{n}\right\}$ satisfies $n^{1 / 2} q_{n} \rightarrow \infty$, then the term μ / Q_{n} in (2) can be absorbed into the term $o\left(n^{1 / 2} q_{n} / Q_{n}\right)$, and so Theorem C is special case of Theorem 1.

Theorem 2. Suppose that condition (1) holds, and that

$$
\begin{align*}
n q_{n} s_{n} & =O_{L}(1) \tag{3}\\
\frac{1}{n q_{n}} & =O(1) \tag{4}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} k^{1 / 2} t_{k} Q_{k}=\mu+o\left(n^{-1 / 2}\right) \tag{5}
\end{equation*}
$$

where μ is a constant. Then $\left\{s_{n}\right\}$ is sumable to 0 by every member of Γ.
The notation $x_{n}=O_{L}(1)$ signifies, as usual, that $\lim \inf x_{n}>-\infty$. Theorem 2 generalizes another of Parameswaran's results [8, Theorem 2]. His result is essentially the case $q_{n}:=1 / n$ of our Theorem 2. The first
conclusion of Theorem 1 is an immediate consequence of Theorem C and the following lemma.

Lemma. Suppose that conditions (1) and (2) hold. Then

$$
s_{n}^{1}=s+o\left(n^{-1 / 2}\right)
$$

Proof. We may suppose that $s=0$. Let

$$
\tau_{n}:=t_{n} Q_{n}
$$

Then, for $n \geqslant 1$,

$$
s_{n}=\frac{\tau_{n}-\mu}{q_{n}}-\frac{\tau_{n-1}-\mu}{q_{n-1}}-\left(\tau_{n-1}-\mu\right)\left(\frac{1}{q_{n}}-\frac{1}{q_{n-1}}\right),
$$

so that

$$
\begin{equation*}
\sum_{k=0}^{n} s_{k}=\frac{\tau_{n}-\mu}{q_{n}}-\sum_{k=1}^{n}\left(\tau_{k-1}-\mu\right)\left(\frac{1}{q_{k}}-\frac{1}{q_{k-1}}\right)+\frac{\mu}{q_{0}} \tag{6}
\end{equation*}
$$

and so

$$
\begin{equation*}
s_{n}^{1}=o\left(n^{-1 / 2}\right)-\frac{1}{n+1} \sum_{k=1}^{n}\left(\tau_{k-1}-\mu\right)\left(\frac{1}{q_{k}}-\frac{1}{q_{k-1}}\right) \tag{7}
\end{equation*}
$$

Next, by (2), we have that $\tau_{k}=\mu+\varepsilon_{k}(k+1)^{1 / 2} q_{k}$, where $\varepsilon_{k} \rightarrow 0$. Hence, by (1), we get that

$$
\begin{align*}
n^{-1 / 2} & \sum_{k=1}^{n}\left(\tau_{k-1}-\mu\right)\left(\frac{1}{q_{k}}-\frac{1}{q_{k-1}}\right) \\
& =n^{-1 / 2} \sum_{k=1}^{n} k^{-1 / 2} \varepsilon_{k-1} k\left(\frac{q_{k-1}}{q_{k}}-1\right)=o(1) . \tag{8}
\end{align*}
$$

It follows from (7) and (8) that $s_{n}^{1}=o\left(n^{-1 / 2}\right)$.
Proof of Theorem 1. As stated above, the first conclusion follows from the lemma and Theorem C. To prove the remaining conclusions we observe, as Parameswaran did [8, proof of Theorem 1], that a consequence of a result due to Lorentz [5] is that there exists a bounded sequence $\left\{x_{n}\right\}$ satisfying $x_{n}^{1}=O\left(n^{-1 / 2}\right)$ which is not E_{δ}-summable for any $\delta \in(0,1)$. We now define $\left\{s_{n}\right\}$ so that $\tau_{n}:=t_{n} Q_{n}=(n+1) q_{n} x_{n}^{1}$. Then

$$
\begin{equation*}
\tau_{n}=O\left(n^{1 / 2} q_{n}\right) \tag{9}
\end{equation*}
$$

It follows from (6) with $\mu=0$ that

$$
\begin{aligned}
& s_{n}^{1}=x_{n}^{1}-y_{n}^{1}, \quad \text { where } y_{n}:=\tau_{n-1}\left(\frac{1}{q_{n}}-\frac{1}{q_{n-1}}\right) \\
& \\
& \text { for } n \geqslant 1 \text { and } y_{0}:=0,
\end{aligned}
$$

and so

$$
s_{n}=x_{n}-y_{n} .
$$

Next, by (9) and (1), we have that

$$
y_{n}=\frac{\tau_{n-1}}{q_{n-1}}\left(\frac{q_{n-1}}{q_{n}}-1\right)=O\left(n^{-1 / 2}\right)=o(1)
$$

so that $\left\{y_{n}\right\}$ is E_{δ}-summable. Since $\left\{x_{n}\right\}$ is bounded and not E_{δ}-summable, it follows that $\left\{s_{n}\right\}$ also has these properties. Now it is known [6, Satz 25; 3, Theorem 3] that all members of Γ are equivalent for bounded sequences, and so $\left\{s_{n}\right\}$ cannot be summable by any member of Γ.

Proof of Theorem 2. For $n \geqslant 1$, let

$$
z_{n}:=\tau_{n}-\mu n^{-1 / 2}, \quad \text { where } \quad \tau_{n}:=t_{n} Q_{n}
$$

Then we are given that

$$
\begin{equation*}
\frac{1}{n} \sum_{k=1}^{n} k^{1 / 2} z_{k}=o\left(n^{-1 / 2}\right) \tag{10}
\end{equation*}
$$

By [2, Theorem 1 with $p=1]$ and (10),

$$
\begin{equation*}
n^{1 / 2} z_{n} \rightarrow 0(B, \alpha, \beta) \tag{11}
\end{equation*}
$$

Further, (10) implies that

$$
\begin{equation*}
z_{n}=o(1) \tag{12}
\end{equation*}
$$

Next, using the notation $\Delta x_{n}:=x_{n}-x_{n-1}$, we have that

$$
\begin{aligned}
\Delta\left(n^{1 / 2} z_{n}\right)= & n^{1 / 2}\left(z_{n}-z_{n-1}\right)+z_{n-1}\left(n^{1 / 2}-(n-1)^{1 / 2}\right) \\
= & n^{1 / 2}\left[\left(\tau_{n}-\mu n^{-1 / 2}\right)-\left(\tau_{n-1}-\mu(n-1)^{-1 / 2}\right)\right] \\
& +z_{n-1}\left(n^{1 / 2}-(n-1)^{1 / 2}\right) \\
= & n^{1 / 2}\left(\tau_{n}-\tau_{n-1}\right)+\mu n^{1 / 2}\left((n-1)^{-1 / 2}-n^{-1 / 2}\right) \\
& +z_{n-1}\left(n^{1 / 2}-(n-1)^{1 / 2}\right)
\end{aligned}
$$

Hence, by (12) and (3),

$$
\begin{equation*}
n^{1 / 2} \Delta\left(n^{1 / 2} z_{n}\right)=n q_{n} s_{n}+o(1)=O_{L}(1) \tag{13}
\end{equation*}
$$

By virtue of a Tauberian theorem for Borel-type methods [3, Theorem 1 with $r=0$], it follows from (11) and (13) that

$$
\begin{equation*}
n^{1 / 2} z_{n}=o(1) \tag{14}
\end{equation*}
$$

At this stage it is worth noting that if $\mu=0$, then (14) and (4) imply that $\tau_{n}=o\left(n^{1 / 2} q_{n}\right)$, so that the required conclusion follows from Theorem 1. Returning to the general case, we deduce from (6) that

$$
\begin{align*}
s_{n}^{1}= & \frac{\tau_{n}}{(n+1) q_{n}}-\frac{1}{n+1} \sum_{k=1}^{n} \tau_{k-1}\left(\frac{1}{q_{k}}-\frac{1}{q_{k-1}}\right) \\
= & \frac{z_{n}+\mu n^{-1 / 2}}{(n+1) q_{n}}-\frac{1}{n+1} \sum_{k=1}^{n-1}\left(z_{k}+\mu k^{-1 / 2}\right)\left(\frac{1}{q_{k+1}}-\frac{1}{q_{k}}\right) \\
& -\frac{\tau_{0}}{n+1}\left(\frac{1}{q_{1}}-\frac{1}{q_{0}}\right) . \tag{15}
\end{align*}
$$

By (1) and (4),

$$
\frac{1}{q_{k+1}}-\frac{1}{q_{k}}=\left(\frac{q_{k}}{q_{k+1}}-1\right) \frac{1}{q_{k}}=O(1)
$$

and consequently it follows from (14) that

$$
\begin{equation*}
n^{1 / 2} \sum_{k=1}^{n-1} k^{1 / 2} z_{k} k^{-1 / 2}\left(\frac{1}{q_{k-1}}-\frac{1}{q_{k}}\right)=o(1) . \tag{16}
\end{equation*}
$$

Next, by (14), (4), (15), and (16), we have that

$$
s_{n}^{1}+u_{n}^{1}=o\left(n^{-1 / 2}\right)
$$

where

$$
u_{n}^{1}:=\frac{-\mu n^{-1 / 2}}{(n+1) q_{n}}+\frac{\mu}{n+1} \sum_{k=1}^{n-1} k^{-1 / 2}\left(\frac{1}{q_{k+1}}-\frac{1}{q_{k}}\right)
$$

whence, for $n \geqslant 2$,

$$
u_{n}=\frac{\mu}{q_{n}}\left((n-1)^{-1 / 2}-n^{-1 / 2}\right)=O\left(n^{-1 / 2}\right)=o(1)
$$

by (4). It now follows, by Theorem C and the regularity of the members of
Γ, that $\left\{u_{n}\right\}$ and $\left\{s_{n}+u_{n}\right\}$ are summable to 0 by every member of Γ, and therefore so also is $\left\{s_{n}\right\}$.

References

1. D. Borwein, On methods of summability based on integral functions II, Proc. Cambridge Philos. Soc. 56 (1960), 125-131.
2. D. Borwein and T. Markovich, Cesàro and Borel-type summability, Proc. Amer. Math. Soc. 103 (1988), 1108-1111.
3. D. Borwein and T. Markovich, A tauberian theorem concerning Borel-type and Cesàro methods of summability, Canadian J. Math. 40 (1988), 228-247.
4. G. H. Hardy, "Divergent Series," Oxford Univ. Press, Oxford, 1949.
5. G. G. Lorentz, Direct theorems on methods of summability, Canad. J. Math. 1 (1949), 305-319.
6. W. Meyer-König, Untersuchungen über einige verwandte Limitierungsverfahren, Math. Z. 52 (1949), 257-304.
7. M. R. Parameswaran, On summability functions for the circle family of methods, Proc. Natl. Inst. Sci. India Part A 25 (1959), 171-175.
8. M. R. Parameswaran, Logarithmic means and summability by the circle methods, Proc. Amer. Math. Soc. 52 (1975), 279-281.
9. K. Zeller and W. Beekmann, "Theorie der Limitierungsverfahren," Zweite erweiterte und verbesserte Auflage, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 15, Springer-Verlag, Berlin/New York, 1970.

[^0]: * This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

